

MBS-003-1164001 Seat No. ____

M. Sc. (Sem. IV) (CBCS) Examination

April / May - 2018

Mathematics: MATH.CMT - 4001

(Linear Algebra) (New Course)

Faculty Code: 003

Subject Code: 1164001

Time: $2\frac{1}{2}$ Hours] [Total Marks: 70]

Instructions: (1) Answer all the questions

- (2) Each question carries 14 marks.
- (3) Vector spaces considered here are finitedimensional
- 1 Answer any seven:

 $7 \times 2 = 14$

- (a) When is an element $T \in A_F(V)$ said to be invertible? If $T \in A_{\mathbb{R}}\left(\mathbb{R}^{\left(7\right)}\right)$ is invertible, then find r(T).
- (b) Why does there exist no vector space V over \mathbb{R} such that $\dim_{\mathbb{R}} A_{\mathbb{R}}(V) = 85$?
- (c) Let $T \in A_F(V)$ and let p(x) be the minimal polynomial of T over F. If $\lambda \in F$ is a characteristic root of T, then show that $p(\lambda) = 0$.
- (d) When are $T, S \in A_F(V)$ said to be similar?
- (e) Let $T: \mathbb{Q}^{(3)} \to \mathbb{Q}^{(3)}$ be defined by T(1,0,0) = (0,1,0), T(0,1,0) = (0,0,1), T(0,0,1) = (0,0,0) and extend T linearly to the whole of $\mathbb{Q}^{(3)}$. Verify that T is nilpotent and find the index of nilpotence of T.

MBS-003-1164001]

[Contd....

- (f) Let $A \in \mathbb{R}_5$. When is A said to be a basic Jordan block belonging to $\sqrt{13}$?
- (g) State Cramer's rule.
- (h) Let (V, <, >) be an inner product space over \mathbb{C} . Let $N \in A_{\mathbb{C}}(V)$ be normal. If $u \ v \in KerN$, then show that $v \in KerN^*$.
- (i) Let (V, <, >) be as in (h). If $T \in A_{\mathbb{C}}(V)$ is Hermitian, then show that $< T(v), v > \in \mathbb{R}$ for any $v \in V$.
- (j) State the polarization identity.
- 2 Answer any Two:

 $7 \times 2 = 14$

- (a) (i) Let $T \in A_F(V)$. Prove that T satisfies a nontrivial polynomial $q(x) \in F[x]$.
 - (ii) If $T \in A_F(V)$ is invertible, then show that T^{-1} is a polynomial expression in T over F.
- (b) If V is a n-dimensional vector space over a field F, then prove that $A_F(V)$ and F_n are isomorphic as algebras over F.
- (c) Let $T, S \in A_F(V)$. If S is regular, then show that T and STS^{-1} have the same minimal polynomial.
- 3 (a) If n_l is the index of nilpotence of a nilpotent 5 $T \in A_F(V)$ and if $v \in V$ is such that $T^{n_l-1}(v) \neq 0$, then prove that $\left\{v, T(v), \dots, T^{n_l-1}(v)\right\}$ is linearly independent over F.
 - (b) Let $V = V_1 \oplus V_2$, where V_1 and V_2 are invariant under $T \in A_F(V)$. If $p_i(x) \in F[x]$ is the minimal polynomial of $T|V_i$ for each $i \in \{1,2\}$, then show that the minimal polynomial of T over F is the least common multiple of $p_1(x)$ and $p_2(x)$.

5

- (c) Let $A, B \in F_n$. Show that tr(AB) = tr(BA).
- 3 (a) Let $T, S \in A_F(V)$ be similar. Show that given a basis 5 B_1 of V over F, there exists a basis B_2 of V over F such that the matrix of T in B_1 equals the matrix of S in B_2 .
 - (b) Prove that any $T \in A_F(V)$ satisfies its characteristic **5** polynomial.
 - (c) Let $A \in \mathbb{C}_n$ be Hermitian. Show that any characteristic root of A is real.
- 4 Answer any Two:

 $7 \times 2 = 14$

- (a) If $\dim_F(V) = n$ and if $T \in A_F(V)$ has all its characteristic roots in F, then prove that T satisfies a polynomial of degree n over F.
- (b) Let $A \in F_n$. Show that $\det(A) = \det(A')$.
- (c) Let $A \in F_n$ and suppose that K is the splitting field of the minimal polynomial of A over F. Show that there is an invertible matrix $C \in K_n$ such that CAC^{-1} is in Jordan form.
- 5 Answer any **Two**:

 $7 \times 2 = 14$

- (a) Let $T \in A_F(V)$. If V is cyclic relative to T, then prove that there exists a basis B of V over F such that the matrix of T in B is C(p(x)), where p(x) is the minimal polynomial of T over F.
- (b) Let (V,<,>) be an inner product space over \mathbb{C} . Let $T \in A_{\mathbb{C}}(V)$. Show that T is unitary if and only if it takes an orthonormal basis of V into an orthonormal basis of V.
- (c) Let V be a vector space over \mathbb{R} and let f be a symmetric bilinear form on V. Prove that there is a basis B of V that the matrix of f in B is diagonal.
- (d) Let $n \ge 1$. Show that the mapping $f: F_n \to F_n$ defined by f(A) = A' is an adjoint of F_n .